$$\frac{p328}{3b} = \frac{p328}{45,41,447,65}$$

$$\frac{38}{40} = \frac{44}{40} = \frac{$$

$$(18) \frac{1}{4} \sin(2x^2) + C$$

$$(20)$$
 $(7x-2)^4 + C$

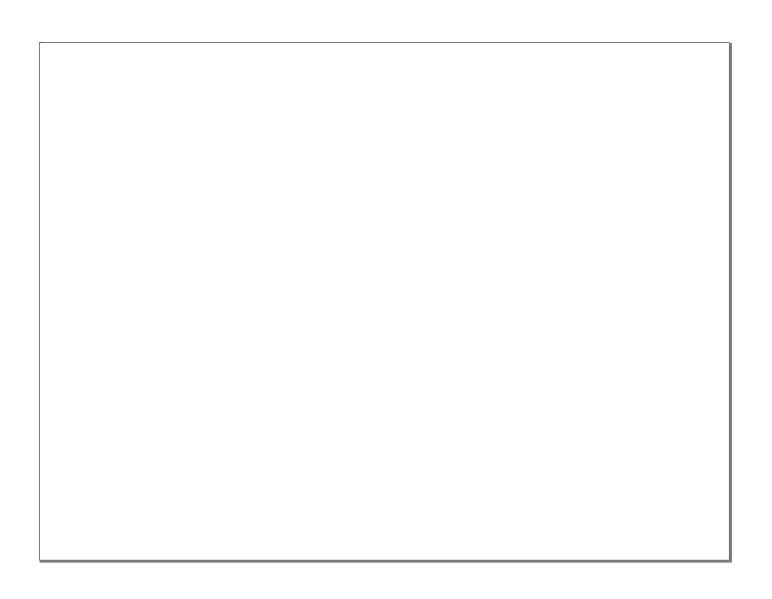
(20)
$$(7x-2)^{4} + C$$
 (26) $\tan(x+2) + C$
(22) $-6\sqrt{1-r^{3}} + C$ (28) $scc(Q+\frac{\pi}{2}) + C$

20) $(28(7x-2)^3 dx u = 7x-2)$ $du = 7 dx dx = \frac{4}{7}$ $(22(1/7)(7x-2)^3 du$ $(4)^4 = (7x-2)^4 + c$

27. $u = \tan x$ $du = \sec^2 x dx$ $\int t an x \sec^2 dx$ $\int u'^2 du \Rightarrow \frac{2}{3} (\tan x)^{3/2} + C$ $\frac{2}{3} u^{3/2} + C$

More 6.2 - Using Trig Substitution

(1)
$$\int \frac{dx}{\cos^2 2x} = \int \sec^2(2x) dx \qquad dx = 2 dx$$
 $= \frac{1}{2} \int \sec^2(2x) dx \qquad dx = 2 dx$
 $= \frac{1}{2} \int \sec^2(2x) + C$
(2) $\int \cot^2(3x) dx \qquad \int \sin^2 x + \cos^2 x = 1$
 $\int \cot^2(3x) dx \qquad \int \cot^2 x = \csc^2 x$
 $\tan^2 x + 1 = \sec^2 x$
 $= \frac{1}{3} \int (\csc^2(3x) - 1) dx \qquad \int dx = 3 dx$
 $= \frac{1}{3} \int (-\cot x - u) + C = \frac{1}{3} \int (-\cot (3x) - (3x)) + C$
 $= \frac{1}{3} \int \cot (3x) - x + C$
(3) $\int \cot 7x dx = \int \frac{\cos 7x}{\sin 7x} dx \qquad u = \sin 7x$
 $= \frac{1}{7} \int \frac{du}{u} = \frac{1}{7} \ln |u| + C$
 $= \frac{1}{7} \ln |x| + C$
(4) $\int \frac{\pi}{3}$
 $\int \cot x dx = \int \frac{\cos 7x}{\sin 7x} dx \qquad u = \tan x$
 $\int \cot x dx = \int \frac{\sin 7x}{\sin 7x} dx \qquad u = \tan x$
 $\int \cot x dx = \int \frac{\sin 7x}{\sin 7x} dx \qquad u = \tan x$
 $\int \cot x dx = \int \frac{\sin 7x}{\sin 7x} dx \qquad u = \tan x$
 $\int \cot x dx = \int \frac{\sin 7x}{\sin 7x} dx \qquad u = \tan x$
 $\int \cot x dx = \int \frac{\sin 7x}{\sin 7x} dx \qquad u = \tan x$
 $\int \cot x dx = \int \frac{\sin 7x}{\sin 7x} dx \qquad u = \tan x$
 $\int \cot x dx = \int \frac{\sin 7x}{\sin 7x} dx \qquad u = \tan x$
 $\int \cot x dx = \int \frac{\sin 7x}{\sin 7x} dx \qquad u = \tan x$
 $\int \cot x dx = \int \frac{\sin 7x}{\sin 7x} dx \qquad u = \tan x$
 $\int \cot x dx = \int \frac{\sin 7x}{\sin 7x} dx \qquad u = \tan x$
 $\int \cot x dx = \int \frac{\sin 7x}{\sin 7x} dx \qquad u = \tan x$
 $\int \cot x dx = \int \frac{\sin 7x}{\sin 7x} dx \qquad u = \tan x$
 $\int \cot x dx = \int \frac{\sin 7x}{\sin 7x} dx \qquad u = \tan x$
 $\int \cot x dx = \int \frac{\sin 7x}{\sin 7x} dx \qquad u = \tan x$
 $\int \cot x dx = \int \frac{\sin 7x}{\sin 7x} dx \qquad u = \tan x$
 $\int \cot x dx = \int \frac{\sin 7x}{\sin 7x} dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx = \int \cot x dx \qquad u = \cot x dx$
 $\int \cot x dx = \int \cot x dx =$



U-Substitution with Definite Integrals $\int_{100}^{\pi/3} \frac{u = \tan x}{\tan x}$ $\int_{0}^{\pi/3} \frac{du}{du} = \frac{1}{2}u^{2} \int_{0}^{3} \frac{1}{2}(\sqrt{3})^{2} - \frac{1}{2}(\sqrt{3})^{2}$ $\int_{0}^{\pi/3} \frac{du}{du} = \frac{1}{2}u^{2} \int_{0}^{3} \frac{1}{2}(\sqrt{3})^{2} - \frac{1}{2}(\sqrt{3})^{2}$ $\int u \, du = \frac{1}{2} u^2 = \frac{1}{2} \left(\tan x \right)^2 \Big|_{3}^{\frac{\pi}{3}}$ $= \frac{1}{2} (\tan \frac{\pi}{3})^2 - \frac{1}{2} (\tan 0)^2$ $=\frac{5}{7}(2)_5-\frac{5}{7}(0)_5=\frac{5}{3}$

HW: p338 #33-51 odds, 54-56, 58, 71-76 447 wrong in back